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Reevaluating the debate on the effectiveness of alternative portfolio models: Out-of-sample 
analysis of Brazil’s equity market, 2015-23 
 

Resumo:  

Em todo o mundo, os mercados de ações chamam a atenção de investidores e pesquisadores financeiros, que 
compartilham um interesse comum na busca de estratégias de portfólio relativamente mais eficientes. Embora inúmeras 
novas técnicas de alocação tenham sido propostas, a literatura disponível ainda dá ênfase a sistemas analíticos mais 
tradicionais. Assim, nesta pesquisa, uma grande amostra, com muitas ações e longas séries de dados, é aplicada à análise 
comparativa de modelos de portfólio amplamente utilizados por meio de resultados baseados em dados fora-da-amostra. 
Os resultados obtidos, ao contrário de muitas avaliações críticas, destacam a superioridade das carteiras obtidas de 
modelos de alocação ótima sobre as estratégias baseadas em índice de mercado e pesos iguais. 

Abstract:  

Around the world, equity markets draw the attention of investors and financial researchers, who share a common interest in 
searching for relatively more efficient portfolio strategies. Although numerous new allocation techniques have been 
proposed, the available literature still gives emphasis to more traditional analytical systems. Accordingly, in this research, a 
large sample, with many stocks and long data series, is applied to the comparative analysis of widely used portfolio models 
through results based on out-of-sample data. The results obtained, contrary to many critical evaluations, highlight the 
superiority of portfolios derived from optimal allocation models over strategies based on market index and equal weights. 
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1. Introduction 

Not long after the advent of mean-variance portfolio analysis (Markowitz, 1952), 

and despite the general recognition of its formal-theoretical refinement, it became clear 

that this model was subject to certain difficulties and inconsistencies—a finding based on 

evaluations of different types. In numerous articles on alternative portfolio strategies, it 

has been frequently mentioned that the application of the optimization model is not 

widespread among investment professionals, since the portfolios obtained by this method 

are often marked by weights considered "extreme" and "non-intuitive". In particular, a 

great number of assets are usually included with short positions – when the model is 

resolved without imposing non-negativity restrictions – or, when such constraints are 

introduced (long-only portfolios), solutions often include considerably large weights on 

assets with low liquidity (Michaud, 1989; Black & Litterman, 1992). 

Another type of problem perceived with Markowitz’s portfolio analysis is that, 

even with moderate revisions to the data, the weights in the portfolios are subject to 

exaggerated fluctuations. Moreover, in evaluations based on out-of-sample analyses, 

these solutions often do not perform favorably – in particular, when compared to 

straightforward portfolios with equal weights (De Miguel et al., 2009). Several authors 

have stated that, among the factors responsible for the shortcomings pointed out above, 

the problem of errors in the estimation of parameters stands out, especially in the case of 

expected returns – a situation that has been called "estimation risk". Deng et al. (2013) 

state that, in addition to errors in the estimation of means, risks, and correlations, the 

available data on returns are subject to high kurtosis and negative skewness. 

A development that results from the perception of the importance of estimation 

errors is the line of research focused on risk, or "risk-based strategies" (De Carvalho et. 

al., 2012), since the absence of estimates of expected returns reduces the effects of 

estimation risk. In this context, the most common portfolio strategies can be prioritized 

according to the potential effects of estimation risk. In an initial position, portfolios with 

equal weights should be located given that this risk is not present. In a secondary place, 

should appear portfolios based exclusively on risk, a group that includes the minimum 

risk portfolio obtained from the mean-variance model. At the other extreme in this 

hierarchy should be included strategies that also use mean estimates and, in particular, 

portfolios that maximize the "ex-ante" Sharpe ratio. 

The general objective of this paper is to pursue a comparative assessment of 

Markowitz’s portfolio analysis from the perspective of the plentiful criticism available in 
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the literature. To reach this overall aim, alternative strategies are evaluated using, on a 

monthly basis, out-of-sample data obtained for a large number of socks available in the 

Brazilian market. Each month, the portfolios were rebalanced by incorporating the latest 

data – a procedure that uses a fixed-sized "window" of data, which is periodically shifted. 

In this way, each month, ex-post returns that result from the solutions obtained in the 

previous period are available. In this evaluation, we consider both the unrestricted and 

restricted (long only) versions of the optimization model. We also impose an upper limit 

on the individual assets’ weights in order to keep the results more closely related to the 

intuitive behavior of a typical investor.  

In this study, the portfolio strategies that were used were: equal weights, sample-

based mean-variance (global minimum variance), maximum ex-ante Sharpe ratio; global 

minimum variance with short-sale constraints; and maximum Sharpe ratio with short sale-

constraints. Additionally, results for the major stock-market index in Brazil (Ibovespa) 

are used as a benchmark. On the other hand, a second type of comparison pursued is the 

statistical evaluation of the sample distributions of monthly returns in order to assess if 

the available data are consistent with the general hypothesis that the effects of estimation 

risk are present, especially in the case of solutions that maximize the Sharpe ratio. In this 

second type of comparison, the pattern observed in the equal weights’ portfolios plays a 

central role. 

Contrary to many of the critical evaluations available in the literature, but in 

accordance with the findings in a more recent study (Theron & van Vuuren, 2018), the 

overall Markowitz’s analysis does not present an unfavorable performance in the data 

sample that was used. 

 

2. Review of literature 

One early reference that brought attention to the counter-intuitive nature and the 

problem of excessive variability in portfolios based on mean-variance analysis is 

Michaud (1989). This author also emphasizes that the data used in the optimized solutions 

were subjected to an acute problem of estimation error. As examples of problems of this 

kind, Black & Litterman (1992) point out that “when investors impose no constraints, the 

models almost always ordain large short positions in many assets” (p. 28). On the other 

hand, when non-negativity constraints are imposed, the optimizing solutions often contain 
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“unreasonably” large weights in not-so-liquid assets.1  

Zakamouline & Koekebakke (2009) affirm that, when one cannot conclude that 

the returns are normally distributed, solutions based on the maximum ex-ante Sharpe ratio 

can be “misleading” and “unsatisfactory”. Additionally, Deng et. al. (2013) emphasize 

that, since the Sharpe ratio implicitly assumes that the returns are independently 

distributed normal random variables, this approach suffers from the problem of estimation 

errors given that this assumption is not valid in financial markets.  

Among the articles investigating the efficiency of alternative portfolio allocation 

methods, one should mention Haugen and Baker (1991). These authors verify that indices 

based on market capitalization are not efficient in several situations, for example: when 

investors disagree about the risk and expected return; when short selling is restricted; 

when investment income is taxed; when investment alternatives are not included in the 

benchmark; and when foreign investors are in the domestic capital market. The authors 

conclude that, in these situations, there are alternatives to portfolios based on market 

capitalization that obtain the same expected return, but with less volatility. Alternatively, 

Grinold (1992), using an approach that was proposed in Gibbons et al. (1989), conducted 

tests on the possibility of outperforming the benchmark for five equity markets: German, 

American, Australian, British, and Japanese. The results indicated that for four of the five 

markets, the benchmarks (respectively: DAX, S&P 500, ALLORDS, FTA and TOPIX) 

were not efficient in the period analyzed. 

Moreover, in terms of comparing alternative portfolio allocation models, a classic 

reference is DeMiguel et al. (2009), where several different models are examined and 

contrasted. These authors analyze out-of-sample data to access the potential effects of 

estimation risk of solutions based on mean-variance optimization. In particular, strategies 

with equal weights, minimum variances and maximum Sharpe ratios are included in the 

evaluation that was performed. Additionally, many authors consider that the problem of 

estimation errors is more pronounced in the case of expected returns than in moments of 

second order. This realization leads to the use of portfolio strategies that rely only on risk 

and diversification. De Carvalho et al. (2012) develop a very detailed empirical study to 

compare the main alternatives based on this approach, which also include minimum-

variance solutions. In Braga (2015), a similar methodology is pursued of comparing 

 
1 Nevertheless, in the case of this latter problem, one way out is to introduce additional restrictions, 
with maximum values for the portfolio’s weights – an approach that was in fact adopted in this research 
(Section 3). 
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portfolio strategies that require a smaller number of parameters in their solutions, since 

they are less exposed to estimation risk. 

On the other hand, a recent article that is closer to the present study is Dolinar et 

al. (2017). These authors seek to evaluate the efficiency of market-capitalization-

weighted indices (benchmarks) through the comparison with results obtained from 

traditional models: equal weights (or naïve), and the maximization of the Sharpe ratio. 

However, the authors did not consider the alternative of imposing non-negative solutions, 

as was contemplated in the present work. Theron & van Vuuren (2018) also present a 

comparative empirical analysis of portfolio strategies based on the mean-variance model 

and derive conclusions very similar to the ones in this study. 

An earlier paper, that uses data for the Brazilian equity market, is Zanini & 

Figueiredo (2005). Although the approach followed in that text is different from the 

present research, the general objective is also to apply alternative portfolio models to data 

for the Brazilian stock market. In a contemporaneous work, Farias et al. (2006), using 

data for Brazilian equities, also present a comparative analysis for some portfolio 

selection models. More recently, Santos & Tessari (2012) assess out-of-sample perfor-

mances of three portfolio allocation models, and contrast those with the Ibovespa 

benchmark. They also apply alternative estimators for the covariance matrix. In a different 

perspective, Naibert & Caldeira (2015), using data for Brazilian equities, examine 

minimum-variance models with alternative covariance matrix estimation methods. Also, 

Caldeira et al. (2017), investigate the eventual benefits of using high frequency data to 

construct optimal minimum-variance portfolios. 

 

3. Mathematical overview 

With the exception of the allocation strategy based on equal weights, the portfolio 

models in this paper are, from a mathematical perspective, examples of restricted 

optimization problems given that, in all of them, there is an equality constraint that is used 

to establish the main characteristic of a portfolio – represented by the vector x (n×1). This 

constraint can be formulated as the linear function sTx = 1, where sT = [1   1 … 1]. The 

general problem of optimization (minimum) with constraints can be represented by: 

            Min  (x)       (3.1) 
      x  
    subject to  h 

i (x) = 0, i = 1, ..., m;   (3.2) 
  g 

j (x) ≥ 0, j = 1, ..., p.    (3.3) 

In the case of portfolio optimization models that do not allow for short selling, 
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besides the basic linear restriction of a portfolio, inequality constraints x 
j ≥ 0; j = 1, …, 

n; are also present. In fact, in this research, additional restrictions were introduced in these 

versions of the optimization problem with the objective of imposing a maximum weight 

a given stock can have in the portfolio (25%) – which, from the perspective of an investor, 

does seem reasonable. Therefore, in these versions of portfolio optimization, the 

additional restrictions are: 0,25 – x 
j ≥ 0; j = 1, …, n.  

The solutions of models that do not include inequality constraints have relatively 

simple analytic representations. On the other hand, models that include inequality 

constraints can only be solved through numerical methods – they do not have general 

analytical solutions. In all cases, however, the fundaments of these solutions are the same, 

and the general aspects are presented below (Simon & Blume, 1994; Gárciga-Otero, 

2011). 

The most common method to solve an optimization problem with constraints is 

based on the Lagrange function, which includes multipliers λ 
i and μ 

j: 

L (x, λ, μ) = (x) –〈 λ, h(x)〉–〈 μ, g(x)〉  (3.4)  

Proposition 1 (Karush-Khun-Tucker). Necessary conditions for a solution (x*, λ*, μ*): 

Assuming that the partial derivatives of the functions , h 
i, g 

j are well defined, then if x∗ 

is a local solution (minimum point) of problem (3.1) – (3.3), then there are unique values 

x*, λ*, μ*such that: 

∇x L (x*, λ*, μ*) = 0n;  h(x*) = 0m;  g(x*) ≥ 0p;  μ∗ ≥ 0p;  and〈 μ∗, g(x*)〉 = 0  (3.5)  

Proposition 2. Sufficient conditions for a solution (x*, λ*, μ*): Assuming that the first and 

second partial derivatives of the functions , h i, g j are well defined, then one can construct 

the Hessian matrix B = ∇2x x L (x*, λ*, μ*) which, being symmetric, represents a quadratic 

form Q(x) = xTBx. If Q(x) > 0, ∀ x | x ≠ 0n (positive definite), then a solution (x*, λ*, μ*) 

that satisfies Proposition 1 is a local solution (minimum point) of problem (3.1) – (3.3). 

From the perspective of a solution method and assuming (x) is quadratic and all 

restrictions are linear – which is the case of portfolio optimization problems –, Proposition 

1 transforms the original (nonlinear) optimization problem into a linear problem. When 

inequality constraints are present, numerical solution methods must be used. One such 

approach is the so-called complementarity method (Murty, 1988; Miranda & Fackler, 

2002). 

It is well known that, in Markowitz's analysis, portfolios are associated with two 

variables, namely risk (or volatility) and expected return. In the R2 space for these 
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variables, the efficient frontier can be specified as the locus of portfolios with the highest 

expected return for a given level of risk (variance). For the general mean-variance 

problem,  (x) is a positive definite quadratic function, and the sufficient conditions for a 

minimum (Proposition 2) apply. This optimization problem is (Vanini & Vignola, 2001): 

General mean-variance portfolio optimization. 

Min:         ½ xTVx     (3.6) 
   x 
subject to   xTs = 1     (3.7) 

                xT Er = r    (3.8) 

Matrix V in eq. (3.6) contains variances and covariances. Further, in eq. (3.8), Er 

represents a vector with the mean returns of the n assets, and r is a given value on the 

vertical axis. On the other hand, if restriction (3.8) is not included, then we have a global 

minimum-variance problem. When there are no inequality constraints – in particular, 

short sales are allowed –, the portfolio-optimization problem has a straightforward 

analytical solution. 

Theorem 1. The solution of the global minimum-variance portfolio (3.6) – (3.7), 

without inequality restrictions, is x* = (1/a) V –1 s; a = sTV –1 s. 

For a proof, see Vanini & Vignola (2001) and Da Fonseca (2003). 

By introducing in the above analysis the return of a risk-free asset, specified on 

the vertical axis, an optimum point on the frontier of efficient portfolios can be determined 

by a tangent line to the curve that contains the risk-free return. In this problem, restrictions 

(3.7) and (3.8) are altered to include a risk-free asset (rf, with proportion invested x0): 

 Optimum (tangent) portfolio on the efficient boundary. 

Min:         ½ xTVx     (3.6) 
   x 
subject to   xTs = 1 – x0    (3.7a) 

                          xT Er = r – rf x0   (3.8a) 

One aspect that deserves mention is that problem (3.6) – (3.8a) is equivalent to 

the maximization of the well-known Sharpe ratio.2 

Theorem 2. The solution for the optimum (tangent) portfolio (3.6) – (3.8a), without 

inequality restrictions, is x* = V –1 (Er – rf s) (b – a rf) –1. In this solution, a is defined in 

Theorem 1, and b = (Er)T V –1 s. 

 
2 Strictly speaking, for a given portfolio, the Sharpe ratio usually includes the (ex-post) return that was 
observed in a previous period.  



Alternative portfolio models 

– 10 – 

For a proof, see Vanini & Vignola (2001) and Da Fonseca (2003). 

 

4. Methodological elements and sample description  

Generally, the stocks in the sample used in this research are the ones included in 

the benchmark index for the Brazilian equity market – the Ibovespa. The total number of 

equities in this benchmark is not fixed, since it usually changes with each revision of the 

index. In the three revisions that occurred in 2023, the total number of stocks were, 

respectively, 88, 85 and 86. 

Initially 178 stocks were considered for inclusion in the sample. These stocks were 

available in a broader index for the Brazilian equity market – the IBrA-B3 – at the end of 

2023. Then, from this initial set, only the stocks that were traded in the entire research 

period and, at the same time, were part of the Ibovespa in at least one edition during this 

period, were included in the sample that was actually used. The total number of equities 

that were incorporated in this final version was 72. 

As previously stated, the main objective of this paper is to apply five alternative 

portfolio selection models to data available for Brazil’s equity market from 2015 to 2023. 

In the context of the earlier researches mentioned in Section 2, the present work analyzes 

the following models: 1. Equal weights or naïve; 2. Sample-based mean-variance (global 

minimum variance); 3. Maximum Sharpe ratio; 4. Global minimum variance with short-

sale constraints; and 5. Maximum Sharpe ratio with short sale-constraints.3 Additionally, 

a comparison is also made with a benchmark for Brazil’s equity market. In other to 

achieve this paper’s goal, three basic procedures were implemented:  

1. For the 72 stocks, estimates of mean returns, variances, covariances and 

standard deviations were obtained based on data available daily for the previous 

two years up to the last trading day of the month of reference.  

2. Solutions are constructed for the alternative portfolio selection models 

using the estimates obtained in Stage 1. 

3. For each portfolio selection model, out-of-sample returns were 

computed using data for the following month. That is, effective returns were 

obtained for the 72 stocks and this data were used to calculate the actual 

performance of the portfolio – from the perspective of an investor, these are the 

 
3 An important point is that the Sharpe ratio is not being considered here as an ex-post indicator of 
portfolio performance. Instead, the portfolio’s (ex-ante) mean return is used in the traditional formula. 
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gains or losses that would occur by applying a given model.  

Procedures 1, 2, and 3 were repeated for each month from January 2017 onwards 

through a “rolling window”, and this scheme provided out-of-sample results for 82 

months.4 In the models based on the Sharpe ratio, it was used the reference rate for 

Brazil’s Treasury bonds (Selic) for the riskless interest rate. 

All computations were performed in the statistical software environment R, using 

several R financial functions available in the package fPortfolio that was developed by 

Rmetrics (Würtz et al., 2015).  

 

5. Analysis of the results 

As mentioned in previous Sections, the Ibovespa was used as the benchmark for 

Brazil’s equity market. The use of weights based on broad indices like the Ibovespa is 

pehaps the most commom procedure that investors apply for portfolio allocation in 

equities – a solution that unfolds from investment analysis based on the CAPM model. 

Graph 1 gives a general perspective of the changes in this index in the 82 months for 

which, in the present study, out-of-sample results were obtained. As can be perceived in 

the Graph, there were no substantial changes in this benchmark during the research 

period. 

Graph 2 contains an histogram of monthly returns for the Ibovespa, and the 

dramatic effects of the covid epidemic are clearly illustrated on the left tail. For this 

reason, and in order to avoid greater discrepancies, the Table in Appendix A, with sample 

statistical indicators, includes only data up to 2019. 

 

 

 

 

 

 

 

 

 

 
4 It is important to emphasize that the procedure in Stage 3 creates a “real world” situation, in the sense 
that it simulates what would effectively happen to values invested in the portfolios with a one-month 
maturity. 
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GRAPH 1 – Ibovespa index: Equities with greater weights 

 

 

GRAPH 2 – Ibovespa index: Monthly returns, 2015-23 

 

From the perspective of someone who may invest in equity markets, the portfolios 

derived from the optimization models with inequality constraints – non-negative 

restrictions and maximum values for portfolio weights – certainly seem feasible and not 
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too difficult to implement. This important aspect, from a practical standpoint, is illustrated 

in Graphs 3 (global minimum variance) and 4 (maximum Sharpe ratio). Further, these 

Graphs also reveal that, as intuition would suggest, the maximum Sharpe ratio portfolio 

is much more diversified and subjected to greater changes in its weights. 

On the other hand, Graph 5 and Table 1 illustrate the results that should be 

considered the most relevant, especially given that they both are based on out-of-sample 

data that show the effectiveness of the alternative portfolios – that is, the gains and losses 

that would occur from a “real-world” investment strategy established at the beginning of 

each month. 

In Graph 5, only returns are considered and, in relation to this variable, the huge 

disparity in the portfolio's performances is evident. It is especially noteworthy that one of 

the most common allocation strategies – perhaps the most common – based on passive 

investment in a benchmark portfolio, has shown considerably lower results than the 

others. In particular, it can be seen that the global minimum-variance portfolios were more 

successful in terms of cumulative return than the Ibovespa. In the case of models that 

maximize the Sharpe ratio, a more favorable performance in terms of cumulative returns 

can be expected. Also, the very favorable performance of the strategy based on equal 

weights should be highlighted.  

Table 1, in turn, includes indicators for both average return and portfolio risk, as 

well as the ratio that combines them, suggested by Sharpe. Based on out-of-sample data, 

it can be seen that global minimum-variance portfolios have indeed met this target – they 

have the lowest risk. In addition, models that maximize the ex-ante Sharpe ratio, based 

on the mean return of the portfolio, effectively obtained the best results from ex-post data. 

By far the worst result in terms of the Sharpe ratio is that of the Ibovespa, which was 

outperformed by the naïve and global minimum-variance portfolios. Further, another 

aspect that deserves mention is that, considering the Sharpe-ratio results, the differences 

between optimization with and without restrictions were not very large. Still taking in the 

account the comparison between alternative portfolios, Graph 6 presents histograms for 

the best and worst portfolios in terms of the Sharpe ratio.  

In summary, it seems adequate to conclude that what this research fundamentally 

shows is that the data available for the Brazilian stock market point to the superiority of 

portfolios based on Markowitz's mean-variance analysis, especially in the case of 

maximum Sharpe-ratio portfolios. 
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GRAPH 3 – Global minimum variance portfolios with inequality constraints 
Equities with greater weights 

 
Note:     Optimal solutions with non-negativity and maximum-weight inequalities. 
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GRAPH 4 – Maximum Sharpe ratio portfolios with inequality constraints 
Equities with greater weights 

 
Note:     Optimal solutions with non-negativity and maximum-weight inequalities. 

 

GRAPH 5 – Accumulated returns: Out-of-sample data 

 
Notes:  Data from out-of-sample monthly returns from Jan. 2017 to Oct. 2023. 

  MSR – Max. Sharpe ratio; EW – Equal weights; GMV – Global min. variance. 
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TABLE 1 - Out-of-sample portfolio performance (monthly returns) 
    

 Ibovespa Naïve 
Global Minimum 

Variance Maximum Sharpe Ratio 

      
without 

restrictions 
with 

restrictions 
without 

restrictions 
with 

restrictions 
Average return 0.0099 0.0149 0.0126 0.0116 0.0216 0.0206 
Acumulated return 1.8786 2.6706 2.5378 2.3131 4.7507 4.2455 
Portfolio risk 0.0647 0.0733 0.0489 0.0500 0.0699 0.0737 
Sharpe ratio 0.0415 0.1045 0.1100 0.0866 0.2057 0.1819 

 Note: The average risk-free monthly rate is 0.0072. 

 
 
GRAPH 6 – Comparative histograms for portfolios with highest and lowest 
Sharpe ratio 

 

Note: The lower histogram is the mirror image of Graph 2, with the difference that, in 
this case, each circle represents one month. The upper histogram has data for the 
maximum Sharpe ratio portfolio with no constraints. 

 

 

6. Conclusions 

Many evaluations of alternative portfolio models available in the literature include 

comparisons based on mean-variance analysis and broad market indices. In addition, the 

commonly used strategy of assigning equal weights to a relatively large number of assets 

is often included in these comparisons, given that this “naïve” strategy has shown 
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favorable results in many applications. In general terms, these general lines for 

comparison of alternative portfolio were followed in the present study. More specifically, 

five models – four of them based on optimizing solutions – and a benchmark index were 

contrasted and compared using data for Brazil’s equity market for a relatively long period 

of time. 

In the sample that was used, only the stocks that were traded in the entire research 

period and, at the same time, were part of the Ibovespa in at least one edition during this 

period, were included – the total number of equities was 72. For each portfolio selection 

model, out-of-sample returns were computed using data for the following month after the 

period that was used in the estimation and solution. In this way, effective returns were 

generated, and they were used to calculate the actual performance of the alternative 

portfolios. This procedure was repeated for each month from January 2017 onwards 

through a “rolling window”, and this scheme provided out-of-sample results for 82 

months. In the models based on the Sharpe ratio, the reference rate for Brazil’s Treasury 

bonds (Selic) was used for the riskless interest rate. 

When only portfolio returns are considered (Graph 5), the huge disparity in the 

portfolio's performances is evident. It is especially noteworthy that one of the most 

common allocation strategies, based on passive investment in a benchmark portfolio, has 

shown considerably lower results than the others. On the other hand, it can be seen that 

the global minimum-variance portfolios were more successful in terms of cumulative 

return than the Ibovespa. In the case of models that maximize the Sharpe ratio, as might 

be anticipated, a more favorable performance in terms of cumulative returns was 

obtained. Also, the favorable performance of the strategy based on equal weights should 

be highlighted.  

Considering indicators for both portfolio’s return and risk, and especially the 

Sharpe ratio, it can be seen that, based on out-of-sample data, global minimum-variance 

portfolios have indeed met this target – they have the lowest risk. In addition, models that 

maximize the ex-ante Sharpe ratio, based on the mean return of the portfolio, effectively 

obtained the best results from ex-post data. By far the worst result in terms of the Sharpe 

ratio is that of the Ibovespa, which was outperformed by the naïve and global minimum-

variance portfolios. Further, another aspect that deserves mention is that, considering the 

Sharpe-ratio results, the differences between optimization with and without restrictions 

were not very large.  

It seems adequate to conclude, therefore, that what this research fundamentally 
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shows is that available data for the Brazilian stock market point to the superiority of 

portfolios based on Markowitz's mean-variance analysis, especially in the case of 

maximum Sharpe-ratio portfolios. 
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Appendix A: Sample statistical indicators 
Daily returns (%) 
 
Equities Min. Max. Mean Std. Skew. Kurt. 

ABEV3 -8.649 8.17545 0.02546 1.38147 -0.0935 3.33286 
ALOS3 -7.7601 9.69873 0.08828 1.76708 0.57509 2.65997 
ALPA4 -11.676 13.815 0.14524 2.18915 0.1183 2.68745 
ARZZ3 -11.778 8.29469 0.08133 2.27285 -0.1298 1.67649 
B3SA3 -8.8165 9.63918 0.13258 2.07654 0.10257 1.21475 
BBAS3 -23.789 13.4291 0.08189 2.80685 -0.477 7.999 
BBDC3 -13.926 11.4074 0.0689 2.0192 -0.0395 2.84419 
BBDC4 -14.056 12.2462 0.07196 2.06041 -0.0123 3.3952 
BBSE3 -10.786 10.3523 0.03981 1.96205 -0.0402 2.57612 
BEEF3 -8.2917 8.59033 0.00788 2.25774 0.15861 1.38153 
BPAN4 -12.558 20.958 0.11887 3.16932 1.30138 7.08235 
BRAP4 -28.085 15.3775 0.09719 3.12091 -0.4495 5.97215 
BRFS3 -21.999 11.5806 -0.0442 2.2051 -0.5165 9.57721 
BRKM5 -22.042 19.3927 0.05865 2.63072 -0.1403 10.0019 
CCRO3 -15.415 10.5884 0.02762 2.31923 -0.2401 2.63373 
CIEL3 -10.257 14.264 -0.0561 2.30788 0.35323 2.81565 
CMIG4 -23.639 16.3848 0.02896 2.90892 -0.4499 7.77956 
COGN3 -16.498 13.5223 -0.0222 2.93037 -0.0546 2.09887 
CPFE3 -18.597 8.58726 0.06076 1.68999 -0.9601 14.2281 
CPLE6 -13.477 8.98062 0.07762 2.40199 -0.2392 2.20887 
CSAN3 -10.477 10.8449 0.07718 2.15076 -0.106 1.40418 
CSNA3 -22.951 18.7511 0.05717 3.97169 0.19068 2.70897 
CVCB3 -15.502 8.86188 0.09623 2.3182 -0.4173 3.71493 
CYRE3 -17.749 11.0435 0.09593 2.27002 -0.2989 4.20235 
DXCO3 -14.133 12.2486 0.07242 2.36826 0.1983 2.21913 
ECOR3 -16.002 8.79688 0.06181 2.55369 -0.129 1.63166 
EGIE3 -7.9922 6.37632 0.07577 1.46281 0.01155 2.12385 
ELET3 -23.534 40.0759 0.14703 3.54509 1.25805 15.3772 
ELET6 -18.587 27.8243 0.12425 3.1679 0.72171 6.85489 
EMBR3 -16.783 20.2928 -0.0098 2.13957 -0.2407 13.0941 
ENEV3 -44.183 28.7682 0.005 4.12125 -1.5359 24.8136 
EQTL3 -6.4386 7.139 0.12637 1.48138 -0.0867 1.00619 
EVEN3 -20.489 11.1005 0.09886 2.61566 -0.2088 3.69234 
EZTC3 -13.777 10.2523 0.12543 2.32089 0.00975 1.48801 
FLRY3 -7.0261 10.5318 0.12229 1.88372 0.20233 1.10403 
GFSA3 -14.64 19.5131 -0.0551 3.18372 0.34078 2.57026 
GGBR4 -12.81 14.9188 0.05133 3.03531 0.11576 1.54651 
GOAU4 -20.955 16.2707 -0.0255 3.50688 -0.1712 3.34232 
GOLL4 -22.444 40.7641 0.08786 4.49217 1.11252 10.3657 
HYPE3 -15.383 19.18 0.07304 1.79186 0.4442 15.1094 
ITSA4 -10.129 9.77579 0.08176 1.86249 -0.0672 2.15389 
ITUB4 -12.836 10.3684 0.07263 1.90775 -0.0678 3.24672 
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JBSS3 -37.605 20.3245 0.07325 3.23634 -0.7193 18.3953 
JHSF3 -19.807 25.4234 0.07358 3.22362 0.78116 5.22312 
KLBN11 -6.6559 6.31171 0.04616 1.71487 0.0944 0.70082 
LREN3 -8.0651 9.34271 0.12862 1.97652 0.17355 0.83232 
MGLU3 -17.751 31.6912 0.30684 3.99687 0.95732 8.30178 
MRFG3 -10.583 17.2358 0.04276 2.63692 0.6363 3.53496 
MRVE3 -8.6136 12.1949 0.11649 2.17324 0.18969 1.33659 
MULT3 -13.293 6.69031 0.0666 1.80422 -0.1001 2.80589 
NTCO3 -12.506 13.6711 0.06895 2.46927 0.35952 2.73693 
PETR3 -16.154 14.9662 0.0712 3.1187 -0.021 3.01135 
PETR4 -17.149 15.0858 0.06752 3.19845 -0.1391 3.33562 
POMO4 -10.178 13.6361 0.01981 2.60887 0.29573 1.71455 
POSI3 -16.252 31.3483 0.12715 3.33236 0.97549 9.45775 
PRIO3 -26.358 60.7989 0.15916 4.5917 2.47063 30.8367 
QUAL3 -34.77 31.2153 0.0705 2.87051 -0.763 30.3462 
RADL3 -6.636 8.84554 0.1213 1.83815 0.24332 0.96868 
RENT3 -7.3285 8.02942 0.12929 2.23208 0.04611 0.58522 
SANB11 -11.819 8.45574 0.12059 2.121 -0.1107 1.77555 
SBSP3 -12.386 10.4021 0.10088 2.25769 -0.2811 2.41951 
SLCE3 -9.323 9.30265 0.11032 2.26761 0.08426 1.39214 
SMTO3 -9.6412 9.68997 0.05936 1.79218 0.09813 2.33309 
TAEE11 -8.674 8.37174 0.08679 1.5851 -0.1759 1.66165 
TIMS3 -8.9029 10.7098 0.02354 2.01964 0.01881 1.54117 
TOTS3 -7.4662 8.27476 0.05799 2.05971 0.0702 1.052 
UGPA3 -10.717 8.32473 0.00931 1.86238 -0.1859 2.51572 
USIM5 -17.598 30.0892 0.04546 3.94261 0.47645 4.91697 
VALE3 -28.135 13.7685 0.07905 3.10285 -0.5497 6.75426 
VIVT3 -10.831 8.72521 0.04321 1.8545 -0.0148 2.28373 
WEGE3 -9.5453 6.85752 0.09657 1.76426 -0.127 1.06274 
YDUQ3 -16.434 21.2984 0.06069 3.09667 0.02274 3.37932 

 
 


